TCE and 1,1,1-TCA Bioremediation at Indiana Industrial Site

TCE and 1,1,1-TCA bioremediation by CL-Out organisms reduced contaminant concentrations  in ground water under a drum storage area at a central Indiana industrial site.  After  three  monthly applications  of CL-Out microbes, the in situ treatment reduced total maximum CVOC concentrations from 102 mg/L to 3 mg/L in less than 6 months. Click here to view the complete case study.

Bioremediation of a Dry Cleaners

Cost-effective Bioremediation of a Dry Cleaners Quickly Removed Contamination

Historical operations at a Houston area dry cleaners resulted in a chlorinated solvent plume (perchloroethylene or PCE) in the shallow ground water. Permeable shallow soil at the site allowed rapid
vertical migration at the source and lateral migration in the shallow ground water. This
migration resulted in an off-site migration of the plume beneath an apartment complex
causing concern for potential vapor intrusion hazards; as well as, a decrease in property
value. A ground-water extraction and treatment system was installed to address the
dissolved phase concentrations. The system reduced the total volatile organic compound
(VOC) concentration in the source area from 115,400 to 36,500 µg/l. However, over
time, operating maintenance and cost escalations were exceeding the on-going remedial
benefit. The system was shut down after nine years of operation. A review of available
remedial technologies that could be implemented within the physical constraints of the
site was conducted. In-situ enhanced aerobic bioremediation was selected to address the
remaining ground-water concentrations because of the permeability of the formation, the
relatively aerobic conditions, and the benefit of reducing the risk of VC accumulation.

Click here for a link to the full report from the 2007 Battelle Conference on Bioremediation

 

MUNOX SR Approved for Emergency Use Under USEPA National Contingency Plan

Munox SR has been approved by the USEPA for emergency use for marine and other oil spills.  The listing is based on independent verification of effectiveness and absence of toxic substances or pathogens.

The USEPA tested the degradation rate of oil using Munox SR for NCP listing.  The degradation rate exceeded most comparable products with 95% removal of alkanes and 89% removal of aromatics in 28 days.

The NCP lising and test results are available at https://19january2017snapshot.epa.gov/sites/production/files/2013-08/documents/notebook.pdf

Naphthalene Bioremediation Is No Problem For Petrox

Petrox microbe thrive on naphthalene and are very efficient at naphthalene bioremediation in the field. In fact, naphthalene is occasionally  used in the QA/QC  process to verify Petrox viability and effectiveness.  In this test, the Petrox organisms are placed on an agar devoid of a carbon source.  The naphthalene is applied to the top plate as the sole carbon source.  The Petrox viability is then demonstrated by colony growth on the top plate as shown on the following picture.

Click here and here to view cases studies of naphthalene bioremediation case studies.

Brownfield Plan Included CL-Out Bioremediation

A brownfield plan included Cl-Out bioremediation to reduce high concentrations of TCE and other contaminants in ground water at an industrial site near Newark, New Jersey. Using a dynamic remediation plan, three applications of CL-Out microbes followed remediation progress sampling during the site preparation for construction. After reducing the maximum CVOC concentrations from over 8,000 ug/L to less than 20 ug/L, the site met the remediation goals and received a No Further Action Letter from NJDEP. For more information and a detailed case study, click here.