What enzymes Are Involved in Aerobic Bioremediation of PCE and TCE?

CL-Out aerobic bioremediation PCE and TCE is a sustainable process for soil and ground water remediation.  As these compounds are not directly metabolized under aerobic conditions, the competitive advantage goes to the CL-Out organisms that cometabolize them.  While utilizing a sugar substrate, the CL-Out organisms produce  mono- and dioxygenase  enzymes that bridge the carbon bond to destabilize the compound.   The solvent is converted to an organic acid that the organism can metabolize.  View the degradation pathway.  The benefit is that CL-Out bioremediation can be applied to soils both in situ and ex situ.  Click here for to download a case study.  For further explanation call CL Solutions at 513-284-5940.

In-situ Bioremediation of BTEX, TPH and PAHs in Groundwater

Petrox bioremediation reduced  contamination by more than 99% in less than a year at a Florida gas station.

After three underground storage tanks were removed from the location of a convenience store, investigation showed that petroleum contamination was present in small area near the former dispenser island.  The vadose-zone contaminated soil was excavation and disposed off-site.  Ground water monitoring showed that the ground water impact was limited to a small area near the source of contamination. The decision was made to close the site by applying Petrox® bioremediation to the ground water.

Ground Water Contamination

The ground water contamination was in a shallow water table aquifer that had a medium permeability.  The contamination was a suite of BTEX, PAHs, methylnaphthalene isomers and TRPH.

Bioremediation

A pilot study was completed to determine feasibility of Petrox bioremediation combined with a peroxide oxygen supplement.  The pilot study reduced contaminant concentrations by up to 92%.  A full-scale application completed the site remediation.

Results

The pilot study and full-scale applications of Petrox and an oxygen supplement reduced BTEX compounds by >99%, naphthalene by 99%, TRPH by 96% and naphthalene isomers by 88% to achieve the remediation goals and site closure.  The microbial cost for the pilot study and full-scale treatment was less than $2,000.

To learn more, click here to download the case study.

CL-Out Bioaugmentation Following ISCO to Remediate TCE

Bioremediation used to complete closure

CL-Out bioremediation was used to remediate ground water at an active manufacturing plant in eastern Massachusetts after ISCO treatment of TCE in groundwater reached a limit.  CL-Out was selected because the aquifer was naturally aerobic.  CL-Out cometabolizes TCE and other chlorinated solvents under aerobic conditions by producing an oxygenase enzyme that breaks the carbon to carbon bond.  Under aerobic conditions daughter products such as DCE and vinyl chloride are not formed. Thirty days after one application of CL-Out the TCE concentration was reduced by 97% and the site remediation goals were achieved. Click here to download the case study.

Oil-Contaminated Water Treatment

Sustainable Bioremediation of Industrial Wastewater

CL Solutions provides a special consortium of microbes for oil-contaminated water treatment.   Under various conditions, the oil removal rate was as much as 1,300 mg/L/day.  In some situations the remediation goal is simply to remove the visible sheen or separate-phase oil.  With aeration, CL Solutions microbes were able to remove the visible oil layer and reduce the TPH concentration from 29% to less than 1% in 30 days at a waste oil lagoon. For more information and other case studies click here.

A special consortium of microbes removed the visible oil layer from this wastewater.

Oil-Water Separator Discharge Improvement

Similar to waste water treatment in lagoons, Petrox is used to improve the performance of industrial and commercial oil-water separators by degrading dissolved-phase oil.  The treatment goal is to reduce the TPH concentration to below discharge limits to avoid fines, surcharges and potential discontinuation of service.  The Petrox organisms may be introduced into the collection and treatment system at any point,  but are usually added to the collection or equalization sump for longer contact time.  In most cases, the dissolved phase total petroleum hydrocarbons  (TPH) is reduced by 50% to 90% in a manner of days.

For example, at a large city municipal Petrox reduced the TPH discharge from 25.9 to 7.40 mg/L in three days.  At smaller retail oil-change centers the reduction was from 278 mg/L TPH to 14.1 mg/L TPH  in 21 days.  The biological treatment is maintained by adding a gallon of Petrox to the sump weekly.

The cost for maintaining discharge compliance at these applications is as little as $250 per month.

PCE Bioremediation in Aerobic Groundwater

PCE bioremediation in aerobic groundwater by CL-Out microbes reduced environmental risk at a printing company in Kentucky.  Testing found high concentrations of PCE in perched ground-water.  The ground water aquifer was in sn alluvial sand deposit with high permeability.  The high permeability facilitated injection for in situ treatment.  Also, the high permeability of the aquifer matrix also supported aerobic ground water conditions.  With one application of CL-Out the concentration of PCE decreased from 3,600 ug/L to 250 ug/L in less than 45 days.  With further applications the concentration was reduced to below detection limits in 10 months.

Aerobic PCE Bioremediation By Cometabolism

CL-Out is a consortium selected for aerobic PCE bioremediation.  CL-Out cometabolizes PCE by growing on a simple sugar and producing a metabolic enzyme to degrade PCE.  The microbes produce a dioxygenase enzyme that breaks the carbon bond in PCE.  This reaction eliminates the biproducts of reductive dechlorination.  Also, the synergistic effect of the CL-Out consortium cometabolizes the full suite of chloroethenes and chloroethanes. Read more…

Click here for more information about CL-Out bioremediation.