Industrial Dry Cleaning Facility located in Western New York

Site Summary

A CL-Out bioremediation push-pull pilot study was implemented at a confidential dry cleaners site to verify the applicability of CL-Out bioremediation to the site and to determine whether the availability of oxygen to support cometabolism of the halogenated solvents would limit the bioremediations.

Geology and Hydrology

Although the impacted ground water was relatively shallow, the site geology was complicated and varied across even this small site. In general the glacial deposits at the site were mainly till with interbedded sandy and silty zones. The impacted ground water was contained within the granular deposits.


The main ground water contaminant was PCE with lower concentrations of TCE, cis -1,2 DCE and vinyl chloride. In the pilot study area, the PCE concentration was 44,200 μg/L and the total of the daughter products was 14,750 μg/L.

Pilot Study Design

A pilot study was completed in the source area in the fall of 2009. One unit of CL-Out was injected into the affected ground water in the source area. One unit of CL-Out is a 55-gallon slurry with a microbial concentration of 109 cfu/ml. The CL-Out microbes were injected with 50 pounds of dextrose to provide a carbon source to support the energy requirements of the population. Pre- and post -treatment samples were taken on February 19 and December 10, 2009. The post-treatment sample was taken after the monitoring well was purged of the injected volume. The following table shows the contaminant concentration trends in the treatment area.



The pilot study verified the applicability of CL-Out bioremediation to the site. The total concentration of CVOCs was reduced from 59,000 to 13,740 μg/L. The CL-Out bioremediation was most effective in the removal of PCE and TCE. There was an increase in vinyl chloride suggesting some incomplete reductive dechlorination, probably by native dehalogenating organisms. Full-scale treatment will be most effective with the addition of an oxygen supplement to limit the dehalogenation and promote the cometabolism of the daughter products. Overall the push-pull pilot study verified the effectiveness of CL-Out bioremediation and provided insights for making full-scale application more effective.

Bioaugmentation to Reduce Ammonia, Nitrate and Organics in Wastewater

Case Study: Improving Poultry Wastewater Treatment

Site Summary

Petrox DN® bioaugmentation was implemented at a poultry processing plant to deal with a recurring problem of excessive ammonia levels in wastewater discharge. Petrox ND® bioaugmentation reduced the organic carbon load in the wastewater and converted the ammonia to nitrogen gas. Within 48 hours of treatment the ammonia levels in the wastewater were reduced to acceptable levels and discharge limits were maintained.

Nature of the Problem

Wastewater treatment requires the treatment of a variable waste stream with limited control over the volume and concentration of the raw material and only moderate control over the operating conditions. The goals for organic wastes include the removal of organic pollutants, reducing the total organic load, reducing nutrient concentrations including nitrogen, and odor control. Removal of ammonia and nitrogen compounds are typically achieved by a two- step process of nitrification of the ammonia and denitrification of the nitrate. The autotrophs Nitrosomas sp. and Nitrobacter sp. are typically involved in these steps. As autotrophs these microbes use carbon dioxide instead of organic carbon to build cells, organic wastes are not treated by this process.

The Pseudomonas sp. in Petrox DN® oxidize the organic carbon wastes converting it to cell mass, carbon dioxide and water and generating stored cellular energy.  Simultaneously, the Pseudomonas sp. in Petrox DN® remove ammonia and nitrogen by utilizing these compounds as a nitrogen source for cell growth and electron acceptors during the consumption of the organic wastes. The benefit of Petrox DN® bioaugmentation is the removal of both the organic waste, nutrients and elimination of ammonia odors.

Pseudomonas sp. are also cold water tolerant, so Petrox DN® can be used year round under most under natural conditions.


The plant generates 0.85 million gallons of wastewater per day with ammonia levels of 80 to 120 ppm. The wastewater after primary treatment and equalization flows into a 7.5 million gallon anaerobic lagoon and subsequently four sequencing batch reactors (SBRs). At the end of the settling cycle, the supernate discharges to a receiving stream.

Bench-scale laboratory studies showed that nitrate could be removed at a rate of 17 mg/L/hr under aerobic conditions and at a rate of 12 mg/L under anaerobic conditions. TOC could be removed at a rate of 45 mg/L/hr. Petrox DN® bioaugmentation was initiated in the aeration basin and the SBRs.

After less than 48 hours the wastewater met and maintained the wastewater discharge limits.

Bioremediation of Chlorobenzene Isomers Following ISCO Treatment


CL-Out® bioaugmentation was used to remediate ground after ISCO was unsuccessful in remediation of chlorobenzene isomers, including chlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and 1,2-dichlorobenzene. At the initiation of bioaugmentation, individual concentrations were as high as 50,000 µg/L. The CL-Out® treatment quickly reduced contaminant concentrations.

Remediation Approach and Results

CL-Out® was introduced into the contaminated ground water in November 2010 by injection through temporary well points surrounding the monitoring point. One drum of the CL-Out® was injected into the ground water.

The ground water treatment results were monitored by analysis of ground water samples for the contaminants of concern, microbial population, and known functional genes, including naphthalene dioxygenase, phenol hydroxylase, and toluene dioxygenase. The 30-day monitoring results show an immediate decrease in the contaminant concentrations. After 30 days, 62% to 82% of individual contaminants were destroyed. The sampling results 30 days after bioaugmentation are compared to the pre-treatment concentrations on the following chart.


The total biomass increased from 1.5 million to 12.8 million cells per milliliter following the bioaugmentation. The concentration of the naphthalene dioxygenase functional gene also increased by more than ten fold, as shown on the following table.



This project demonstrates several of the benefits of aerobic bioaugmentation. Bioaugmentation provides active control of the site as effective organisms compatible with the site conditions were injected where they were needed. Furthermore, the CL-Out® aerobic cometabolism was compatible with the residual conditions following ISCO treatment. Treatment will continue to reduce the contaminant concentrations to acceptable levels.

Petrox® Bioaugmentation in Bedrock

Case Study: Petroleum Remediation in Central New Jersey


Petrox® bioaugmentation was implemented at a petroleum remediation site in Morris County, New Jersey to destroy residual petroleum compounds in ground water. The impacted ground water was in bedrock fractures under and down gradient of a former UST location. The UST was removed and an oxygen release compound was added to the ground water to stimulate bioremediation. However, residual contamination persisted and Petrox® bioremediation was implemented to remove the residual low concentration found at the site.

Geology and Hydrogeology

The bedrock surface was fairly close to the ground surface and the first ground water encountered upon drilling at the site was within the bedrock. Impacted ground water was contained within the fractures near the bedrock surface in a zone estimated to be 40 feet thick.


Low concentrations of benzene, xylene, ethylbenzene and toluene were present in ground water at and down gradient of the former UST cavity. The area of proposed treatment was 3,600 square feet.


Petrox was applied in two monthly applications of 8 units each. One unit of Petrox® is a 55-gallon slurry with a microbial concentration of 109 cfu/ml. ORC socks were installed in treatment wells to provide an oxygen source for the petroleum metabolism.

The monthly Petrox® injections were on May 29, 2009 and June 26, 2009. Post -treatment samples were taken on June 10, 2009 and May 4, 2010. The following table shows the contaminant concentration treads in the treatment area.



The treatment was successful in reducing the BTEX concentration at the site. However, the increase in concentrations after the first treatment showed that there were residual petroleum constituents in the source that was not reflected in the pre-treatment sampling. Petrox® microbes were detected in all of the bedrock sampling points as far as 30 feet down gradient of an injection point. Overall the treatment verified the effectiveness of Petrox® bioaugmentation in fractured bedrock.