Fast BTEX and Methylnaphthalene Bioremediation

Petrox and Methylnaphthalene Bioremediation Site Summary

Petrox microbes accelerated BTEX and methylnaphthalene bioremediation at a former fueling station in Florida.  After a leaking tank underground storage tank (UST) was removed,  the consultants injected Petrox micorbes into the groundwater. A temporary well showed high concentrations of BTEX, methylnaphthalene isomers, and total recoverable petroleum hydrocarbons (TRPH) in the former tank location.  A permanent monitoring point replaced the temporary well. Since the contaminants were not detected outside of the UST cavity, the treatment focused on the cavity and its proximity. The consultant injected Petrox  into the ground water through 12 direct-push injection points in and around the UST cavity. They used approximately 10 gallons of Petrox solution at each of the injection points in August 2001. After one injection of Petrox, petroleum hydrocarbons concentrations decreased below detection levels in the UST cavity.  Please refer to the table below for the ground water monitoring results.

Persistence in Soil and Low Ground Water Concentrations

Methylnaphthalene and naphthalene persist in soil after other volatile components of fuels are gone.  The persistence comes from to their relatively high affinity for adsorption to soil and relatively low water solubility.  These factors account for the common rebound of ground water concentrations. Despite high concentrations of naphthalene and methylnaphthalene in soil near the ground water table, often the dissolved  concentration in the ground water is very low.  The accumulation of these compounds at the water table causes a problem for remediation.  Frequently after ground water remediation, seasonal fluctuation of the water table through the contaminated vadose zone recharges the concentrations of these compounds.  This results in seasonal fluctuation in the ground water concentrations.

Methylnaphthalene Metabolism

The microbes in Petrox  accelerate the remediation because they product an extracellular biosurfactant that desorbs the methylnaphthalene to make it available for extraction or for in situ bioremediation.  At this site, the contaminated soil was removed to the water table, so concentrations did not rebound after the initial ground water remediation.  At other sites where Petrox bioremediation addressed methylnaphthalene or naphthalene, the consultant combined bioremediation with extraction.  The combined technologies removed the contamination flushed from the soil in addition to the bioremediation.  Click here to view case studies from other sites.

Methylnaphthalene Bioremediation

 

Fast Creosote Bioremediation Results

Fast creosote bioremediation was recently demonstrated by a user of a custom blend of CL Solutions organisms.  The environmental consulting firm applied the microbes to finely shredded wood that had been saturated with creosote.  The initial testing results after bioaugmentation showed a reduction of the creosote concentration by  57% in just 7 days.  The concentration measured as total recoverable hydrocarbons decreased from 3,453 mg/kg to 1,497 mg/kg.

Oil-Contaminated Water Treatment

CL Solutions provides a special consortium of microbes for oil-contaminated water treatment.   Under various conditions, the oil removal rate was as much as 1,300 mg/L/day.  In some situations the remediation goal is simply to remove the visible sheen or separate-phase oil.  With aeration, CL Solutions microbes were able to remove the visible oil layer and reduce the TPH concentration from 29% to less than 1% in 30 days at a waste oil lagoon. For more information and other case studies click here.

A special consortium of microbes removed the visible oil layer from this wastewater.

Bioremediation With Horizontal Injection for BTEX and Naphthalene Remediation

In situ remediation is a contact sport, requiring contact between the microbes and contamination.  Clay-rich soils are particularly challenging as the low permeability limits effective distribution of inoculants.  While numerous closely-spaced injection points can improve the distribution of inoculants, this approach is often not possible at active properties and can be costly.  Horizontal drilling was used on the subject site to overcome the combined challenges of low permeability and limited site access to inject Petrox® microbes for bioaugmentation.  The combined technologies reduced the total BTEX concentrations in ground water from 2,771 µg/L to 645 µg/L in less than one year.

Background

The site is a former gas station located in the Florida panhandle.  The site soils are mixed silt and clayey silts that are typical of the coastal setting.  The depth to the water table varied seasonally from 13 to 18 below ground surface.

The underground storage tanks and contaminated soil had been removed prior to the ground water treatment.  Residual ground water contamination exceeded Florida Ground Water Cleanup Target Levels (GCTLs) for benzene, toluene, ethylbenzene, xylene, naphthalene and methylnaphthalene isomers.

The proposed treatment area was approximately 2,500 square feet.  The treatment depth was from 10 to 25 feet below grade.  The treatment depth included the capillary fringe to treat residual contamination above the seasonal low water table.

Horizontal Injection

 Access to the treatment area was limited by the current property use, the proximity of roads on two sides and a building on the third.  Horizontal drilling was selected by the site consultant, Advanced Environmental Technologies (www.aetllc.com) to deliver Petrox® to the contamination.

The horizontal drill rig was set back from the treatment zone on the opposite side of the building.  The horizontal injection wells were set in four horizontal sets of eight wells. The horizontal layers were at 10, 15, 20 and 25 feet deep.  The wells in each layer were five feet apart.  A total of 32 injection wells were closely spaces for excellent coverage through the treatment zone.

Petrox® was injected into the ground water in two treatment events – November 6, 2008 and June 24, 2009.  Petrox® was delivered in each injection well as the drill stem was withdrawn through the treatment zone.  The injection was monitored for accuracy so that 0.2 gallons of Petrox® was injected per foot of injection zone.  A total of 320 gallons of Petrox® slurry was injected.

Following the Petrox® injection, air was injected periodically through vertical sparging wells to increase the oxygen availability for the microbial metabolism.

Results

Ground water samples were collected from a monitoring well inside the treatment area to track the progress of the bioremediation.  Approximately 60 days after the first Petrox® treatment, analysis of ground water samples showed 84% reduction in the benzene concentration and 35% reduction in the total BTEX compounds concentrations.  There was an apparent increase in the xylene concentration due to ground water mixing and induced increase in solubility due to the bioaugmentation injections.

A second sampling event approximately 30 days after the second injection showed additional reduction in the contaminant concentrations.  After the second injection, the total BTEX concentrations were 23% of the original concentration with xylene decreasing from 1,200 to 95 µg/L.

In addition to the BTEX compounds, naphthalene and methylnaphthalene isomer concentrations decreased through both treatments.

Sampling Date Benzene Toluene Ethylbenzene Xylene Naphthalene
Pre-treatment 11/11/05 3,000 42 1,100 1,100 230
10/23/08 1,700 18 460 454 280
11/6/08 1,600 41 370 760 310
Post-treatment

 

1/22/09 420 43 140 1,200 43
7/30/09 490 2.6 57 95 55

Conclusions

Horizontal drilling and injection made it possible to remediate ground water at this site of petroleum contamination with limited access and low natural permeability.  Without disturbing the property use, the horizontal injection of Petrox® provided effective distribution of the microbes for bioremediation.  The injection may have also made the contamination more available for bioremediation by increasing the contaminant solubility as shown by temporary increases in concentration.

This case study demonstrates that in situ bioaugmentation may be a feasible solution for sites with limited permeability and access restrictions.  For more information contact CL Solutions at www.cl-solutions.com.

Improving Long-Term Bioremediation Results with Nutrients

The goal of bioaugmentation is to improve the rate of contaminant removal by adding a high population of beneficial microbes to the contaminated media.  The additional microbes  should provide short-term benefit as the microbes begin metabolizing the contaminants immediately upon injection. But what benefit does bioaugmentation provide in the long term? And how much benefit does bioaugmentation provide over biostimulation by adding nutrients to the native organisms?

A client of CL Solutions completed a bench-scale study to answer these questions.  A bench-scale study was preferred to a field study because it removes the potential distribution and time-lag issues associated with the distances between injection and monitoring locations in the field.

Samples of petroleum-contaminated soils were obtained and separated into split samples for treatment with microbes and nutrients. Some were untreated for comparison.  Samples were tested for petroleum concentrations, including C-fraction concentrations after 30, 40 and 60 days.  Heterotrophic populations were measured at 40 and 60 days.

The tests showed the following results in the early stages:

  • All of the treated samples showed more than 80% total petroleum reduction in the first 30 days.
  • The sample treated with nutrients only had the same level of petroleum removal as the bioaugmented samples in the first 30 days.
  • The heterotrophic population of the biostimulated sample was as high as in the bioaugmented samples at 40 days.

After 30 days the situation changed.

  • The bioaugmented microbial population continued to increase  after 40 days and may have increased by a factor of 100 times.  Meanwhile, the biostimulated population appeared to stall.
  • The petroleum removal continued in the bioaugmented samples and reached as high as 93% removal.  In comparison the biostimulated sample stalled at 82% removal.
  • The difference appears to be that the bioaugmented samples removed the C-21 to C-35 concentrations at a much higher rate than the biostimulated sample.
  • Phenanthrene was target chemical for bioremediation. The biostimulated sample showed 39% removal while the bioaugmented samples showed complete removal to BDL.

Overall, the superior performance of the bioaugmented samples appears to be related to having a greater metabolic range that removed the heavier hydrocarbon fractions.  Microbes with the extended metabolic range could continue to multiply as they grew on the heavy hydrocarbon fraction.  The results are consistent with field results showing the recalcitrance of heavier hydrocarbon fractions and compounds like naphthalene and phenanthrene under natural attenuation.

Contact CL Solutions for more information and insights.