What is MEOR?

MEOR is microbial enhanced oil recovery.  Some microbes produce biosurfactants that increase the water-solubility of oil.  The biosurfactants’ benefit microbes by making it easier for the microbes to metabolize oil.  Additionally, the biosurfactants can strip oil from rock and soil surfaces to improve environmental remediation by extraction, air stripping, or sparging.

The Pseudomonas sp. in Petrox are naturally occuring petroleum-degrading microbes with the broadest metabolic capabilities.  Their production of biosurfactants is one of their features that makes them so effective.  Pseudomonas sp. produce both glycolipid and lipopeptide surfactants.

An initial increase in concentrations may be observed after Petrox is used at a site due to the biosurfactants.  However, the concentrations decrease as the microbes metabolize the oil.  This feature has been used to remove oil safely from inaccessible or sensitive locations such as near utilities, tanks or building structures.

Micorbial Insights, Inc. (micorbe.com) has biosurfactant assays available t0 test for the presence of the genes in Pseudomonas sp. and other organisms that produce biosurfactants.  If tests show that they are abscent from a site, you can enhance the oil recovery with Petrox and the surfactants it produces.

In addition to the biosurfactants that Petrox produces, a non-ionic surfactant is added to Petrox to formulate Petrox EC.  This combination makes Petrox EC a strong cleaning agent to remove oil and grease from surfaces or contaminated subsurface soil or rock.

CL Solutions continues to expand the use of biological products such as Petrox and Petrox EC for bioremediation and microbial enhanced oil recovery.

How Aerobic PCE Bioremediation Works

How CL-Out Aerobic PCE Bioremediation Works

A CL-Out bioremediation pilot study confirmed that aerobic PCE cometabolism removed dry cleaning solvent contamination from ground water.  The pilot study was located at a former dry cleaners, where the PCE in ground water was 27 parts per billion (ppb).  Bioaugmentation introduced CL-Out microbes and dextrose as the metabolic substrate by injected into the ground water up gradient from the sentinal monitoring well.  After 30 days the PCE concentration decreased to 20 ppb.  After 6 months the PCE concentration decreased to 16 ppb.

As the PCE was decreasing, the site conditions stayed aerobic.  The dissolved oxygen level in ground water decreased from 1.07 to 0.71 mg/l.  Meanwhile,  the ORP decreased from 99 to 45 mv.  These aerobic aquifer conditions support the conclusion that the PCE removal was through aerobic bioremediation.

CL-Out cometabolism uses a dioxygenase enzyme that is produced constituatively as the metabolic substrate is consumed.  The dioxygenase enzyme destabilizes the carbon bond in the PCE to convert the molecule to an organic acid that leads to complete mineralization. Click here to view the PCE and TCE cometabolic degradation pathways.

CL-Out is a consortium of naturally-occurring microbes.  The microbes have the benefits of metabolic diversity and environmental stability.  They are non-pathogenic and safe for human health and the environment. Click here to find out more about CL-Out bioremediation.

 

 

Bioremediation of Phthalates

Fast and Economical Phthalate Contamination Removal

Bioremediation of phthalates can reduce risks to human health and the environment.  Phthalates are a  a family of common industrial chemicals used in plastics and other consume products.  Phthalates can damage the liver, kidneys, lungs and reproductive system.  Petrox microbes can remove these contaminants from water or soil to reduce potential exposure to these risks.

Petrox bioremediation of phthalates has been demonstrated in field and laboratory studies to remove phthalates from soil and ground water.  Field application of Petrox bioremediation reduced bis(2-ethylhexyl)phthalate (BEP) concentrations from 650 ppm to 397  ppm in soil and 300 to 39 ppb in ground water at a site in Rochester, New York.  At the same site di-n-octylphthalate (DOP) in soil was reduced from 7.5 to 1.9 ppm. Click here to view the case study.

How Key-hole Bioremediation Reduces Source and Down-gradient Contamination

CL-Out aerobic PCE bioremediation in a keyhole treatment reduced the mass of contamination near the source and down gradient concentrations in the plume.  At a former manufacturing facility in Cincinnati, Ohio the concentration of PCE near the source was over 100,000 ug/L.  Down gradient of the source the PCE concentrations were less than 10% of the source concentration.  Aggressive treatment in the source area reduced the source concentration and in the down gradient plume.

Source area concentrations decreased as follows after one treatment with CL-Out bioremediation:

  • PCE decreased from 120,000 to 12 ug/L.
  • TCE decreased from 2,000 to 12 ug/L
  • Cis 1,2-DCE decreased from 9,500 to 8,100 ug/L.
  • Vinyl chloride, however, increased from 1,200 to 22,000 ug/L.

The vinyl chloride increased as the aggressive cometabolic treatment stimulated  incomplete reductive dechlorination by other naturally occuring organisms.

Down gradient from the source, the concentrations decreased with slight to no increase in daughter products.  The  down gradient plume had the following results:

  • PCE decreased from 5,000 to 1,600 ug/L.
  • TCE decreased from 43 ug/L to BDL.
  • Cis 1,2-DCE decreased from 140 to 23 ug/L.
  • Vinyl chloride  was not detected before or after treatment.

Keyhole treatment was a cost effective approach to reducing the mass of contamination in a ground water plume by focusing aggressive treatment on the source area.  Concentrations in the rest of the plume decreased as the microbes and treated water dispersed through the plume.

Aerobic PCE Bioremediation By Cometabolism

CL-Out is a consortium selected for aerobic PCE bioremediation.  CL-Out cometabolizes PCE by growing on a simple sugar and producing a metabolic enzyme to degrade PCE.  The microbes produce a dioxygenase enzyme that breaks the carbon bond in PCE.  This reaction eliminates the biproducts of reductive dechlorination.  Also, the synergistic effect of the CL-Out consortium cometabolizes the full suite of chloroethenes and chloroethanes.

Click here to learn more about CL-Out bioremediation.

Aerobic Cometabolism of TCE and 1,4-Dioxane

Field Demonstration of  CL-Out Bioremediation of TCE and 1,4-Dioxane

In a pilot study to compare aerobic cometabolism with anaerobic reductive dechlorination  to remediation TCE and 1,4-dioxane at a former industrial facility near Lakewood, New Jersey, aerobic cometabolism reduced the concentrations of both compounds while anaerobic reductive dechlorination was unsuccessful.  For aerobic cometabolism, CL-Out microbes were injected into the aquifer to a depth of 60 to 90 feet below ground.  The pilot treatment area was 500 square feet.  Monitoring wells were placed upgradient, sidegradient and downgradient of the injection point.  Ground water samples were taken on a monthly basis for 9 months.

The results showed that complete TCE mineralization, without the production of daughter products, was measured within the first month.  CL-Out bioremediation removed 80% of the TCE at 40 feet downgradient in less than three months.  CL-Out bioremediation reduced the 1,4-dioxane concentration to below detection limits at 20 and 40 feet downgradient in the first month.

Click here to view a summary case study.