Aerobic Cometabolism of PCE at an Industrial Site in Tampa, Florida

Project Summary

Degreasing solvents were found in the ground water at an industrial manufacturing facility in Tampa, Florida.  The solvents include PCE and its associated breakdown products. The source of the ground water contaminants was found to be a former water treatment system drain field.  CL-Out® bioremediation was implemented to reduce the volume of contamination in the source area and down gradient. CL-Out® is a consortium of Pseudomonas sp. that produces constitutive enzymes to cometabolize PCE and other halogenated solvents.  Dextrose is added with CL-Out® to provide a substrate for microbial growth.  Application of CL-Out® bioremediation at this site reduced the total chlorinated solvent concentrations as much as 99% in less than 6 months.

Geology and Hydrogeology

The site is located in Tampa, Florida where the geology is characteristically interbedded silt and sand.  The background ground water redox conditions of the aquifer are not known.

Contamination

The PCE and elevated concentrations of daughter products were found in ground water down gradient of the former drain field.  The PCE concentrations were as high as 280 µg/L and DCE concentrations were as high as 4,400 µg/L, which indicates that there was significant contaminant degradation occurring, but the natural degradation stalled at DCE.   Petroleum hydrocarbons were also present in the ground water and may have served as an oxygen sink during the degradation of the petroleum products.

Remediation Design

CL-Out bioremediation was implemented in the ground water to accelerate the remediation of the source area.  A 55-gallon slurry of  CL-Out was injected on February 11, 2003.

Monitoring wells in the source area and surrounding area were sampled to assess the progress of the remediation.   The following table shows the pre-treatment and post-treatment CVOC concentrations in a source area monitoring well (MW-1) near the application of CL-Out.

 Source Area (MW-1)

Sampling Date CVOC Concentrations (µg/L)
  PCE TCE DCE VC
3/28/02 280 750 4,400 BDL
12/19/02 86 120 1,100 BDL
2/11/03 CL-Out Injection
2/24/03 350 280 1,600 BDL
7/7/03 4.6 6.0 63 BDL

RESULTS

After application CL-Out bioaugmentation the chlorinated solvent concentrations in MW-1 decreased by as much as 99%.  Overall the total mass of contamination was significantly diminished by the bioaugmentation in a short period of time to accelerate the natural degradation.

Perchlorate Remediation Receives Greener Cleanup Leadership Award

The Massachusetts Department of Environmental Protection awarded Irwin Engineering of Natick, Massachusetts the 2016 Greener Cleanup Leadership Award for the innovative in situ bioremediation of perchorate contamination of soil and ground water at the Concord Road Site in Billerica, Massachusetts. The award honors LSPs and their clients for promoting greener cleanup principles and practices to reduce the overall net environmental footprint of hazardous waste site cleanup response actions under the Massachusetts Contingency Plan.

In addition to implementing best practices, Irwin Engineers was able to close the site at least 5 years sooner and saving their client over $5 million. The site cleanup achieved residential soil standards without site use limitations and achieved ground water levels protective of drinking water.

In-Situ Petroleum Bioremediation Rates With Petrox

Recent data from field applications of Petrox bioremediation show degradation rates of 100 to 500 micrograms per liter (ug/ml) per day. These degradation rates are for total petroleum hydrocarbons or total BTEX, depending on the site monitoring requirements.

Achieving high degradation rates requires high initial concentrations. Initial concentrations of 1,000 to 10,000 ug/l were used to develop these degradation rates.

At lower concentrations, the degradation rates depend on effective distribution of microbes for cell to contaminant contact. Secondly, desorption of petroleum constituents from submerged soil may cause rebound and suggest lower degradation rates. For these reasons we cannot calculate a degradation rate for petroleum at low concentrations.

Land Farming Application Reduces TPH by 90% to 99%

Petrox microbes were added to excavated petroleum-contaminated soil to accelerate the degradation of DRO and ERO total petroleum hydrocarbons. Petrox was added by spraying the surface of the soil with a hydrated Petrox solution.  The microbes were mixed into the soil using a tractor-mounted disc tiller.  photo-2              photo-1

After approximately 60 days, soil samples were taken for testing.  The soils showed 90% to 99% petroleum removal.  The following chart shows the range of DRO and ERO concentrations before and after Petrox treatment.

land-farming-results

Soil Mixing to Improve Distribution of Microbial Solution

Bioaugmentation results can be accelerated and amplified by soil mixing to improve distribution and contact.  The equipment shown in this example was used to blend Petrox with contaminated soil to a depth of 10 feet.

Soil Mixing Equipment to Improve Microbial Solution Distribution

Soil Mixing Equipment to Improve Microbial Solution Distribution

Click here to view a short video of soil mixing.