Posts

CL-Out Bioremediation of Ground Water in Clay Soils

Successful In Situ Remediation in Low Permeability

CL-Out bioremediation of groundwater in clay soils reduced concentrations of PCE and TCE at a former dry cleaners in Moline, Illinois.  In just over 2 weeks after injection, CL-Out microbes cut the contaminant concentrations in half.

  • PCE from 62.2 to 25.6 mg/L
  • TCE from 11.2 to 6.0 mg/L
  • Cis 1,2-DCE from 3.8 to 1.2 mg/L
  • Vinyl chloride less than 0.001 mg/L before and after treatment

The remediation continues as the microbes grow and cometabolize the residual contamination.  Even in tight clay soils the aerobic cometabolism remediates dry cleaning solvents without producing vinyl chloride or other dangerous by products.

Contact us for a free assessment of your site for bioremediation.

Photographs of Field Applications of Bioaugmentation

These photographs show actual field applications of CL-Out and Petrox.

CL-Out and Petrox are typically packaged in drum liners for convenience.

The hydrated microbes are staged typically for 12 to 24 hours prior to application.

Hydrated microbes are transfered from the drum to the contaminated media for treatment.

CL-Out and Petrox are provided in bulk bags for hydration in tanks larger than 55 gallons.

Hydrated micorbes may be applied to the surface and blended into contaminated soil.

The hydrated microbes may be injected into soil or ground water for in situ treatment.

Blending in the micorbes can also increase available oxygen.

 

How Aerobic PCE Bioremediation Works

How CL-Out Aerobic PCE Bioremediation Works

A CL-Out bioremediation pilot study confirmed that aerobic PCE cometabolism removed dry cleaning solvent contamination from ground water.  The pilot study was located at a former dry cleaners, where the PCE in ground water was 27 parts per billion (ppb).  Bioaugmentation introduced CL-Out microbes and dextrose as the metabolic substrate by injected into the ground water up gradient from the sentinal monitoring well.  After 30 days the PCE concentration decreased to 20 ppb.  After 6 months the PCE concentration decreased to 16 ppb.

As the PCE was decreasing, the site conditions stayed aerobic.  The dissolved oxygen level in ground water decreased from 1.07 to 0.71 mg/l.  Meanwhile,  the ORP decreased from 99 to 45 mv.  These aerobic aquifer conditions support the conclusion that the PCE removal was through aerobic bioremediation.

CL-Out cometabolism uses a dioxygenase enzyme that is produced constituatively as the metabolic substrate is consumed.  The dioxygenase enzyme destabilizes the carbon bond in the PCE to convert the molecule to an organic acid that leads to complete mineralization. Click here to view the PCE and TCE cometabolic degradation pathways.

CL-Out is a consortium of naturally-occurring microbes.  The microbes have the benefits of metabolic diversity and environmental stability.  They are non-pathogenic and safe for human health and the environment. Click here to find out more about CL-Out bioremediation.

 

 

Aerobic Cometabolism of TCE and 1,4-Dioxane

Field Demonstration of  CL-Out Bioremediation of TCE and 1,4-Dioxane

In a pilot study to compare aerobic cometabolism with anaerobic reductive dechlorination  to remediation TCE and 1,4-dioxane at a former industrial facility near Lakewood, New Jersey, aerobic cometabolism reduced the concentrations of both compounds while anaerobic reductive dechlorination was unsuccessful.  For aerobic cometabolism, CL-Out microbes were injected into the aquifer to a depth of 60 to 90 feet below ground.  The pilot treatment area was 500 square feet.  Monitoring wells were placed upgradient, sidegradient and downgradient of the injection point.  Ground water samples were taken on a monthly basis for 9 months.

The results showed that complete TCE mineralization, without the production of daughter products, was measured within the first month.  CL-Out bioremediation removed 80% of the TCE at 40 feet downgradient in less than three months.  CL-Out bioremediation reduced the 1,4-dioxane concentration to below detection limits at 20 and 40 feet downgradient in the first month.

Click here to view a summary case study.

 

 

1,1,1-TCA Bioremediation at an Industrial Site in Dayton, Ohio

Fast, Economical Site Cleanup

CL-Out bioremediation reduced the concentration of 1,1,1-TCA in ground water at a steel manufacturing facility in Dayton, Ohio. Following implementation of ozone treatment and high vacuum extraction for more than 2 years, the contaminant concentrations remained high.  Bioaugmentation followed up on these treatments and reduced the 1,1,1-TCA concentration very quickly.  Within 30 days of bioaugmentation, the source area contaminant concentration decreased by 80%.  After a second application, the concentration decreased from the pre-treatment concentration of 1,100 ug/L to 1.4 ug/L.  The bioaugmentation effect was observed as far as 250 feet downgradient where the concentrations decreased by more than 50%.  Click here for the full case study.