Aerobic Cometabolism of Chlorinated Solvents

CL-Out® aerobic cometabolism successfully remediated solvents in ground water at an operating industrial site in central New Jersey.  The manufacturing and plating facility had historical petroleum and solvent releases.

Chlorinated solvents found in the ground water in two plumes covered a combined area of about one half acre.  A mix of chlorinated solvents including 1,1,1-TCA, 1,1-DCE and PCE in low concentrations icontaminated the ground water.    The remediation goal was to reduce the mass of contamination in the ground water plume to prevent mitigate off-site risks.

After the CL-Out aerobic cometabolism, ground water concentrations in all monitoring wells decreased by more than 80%, which was sufficient to meet the remediation standards.  Click here to download a complete case study.

CL-Out Bioaugmentation Following ISCO to Remediate TCE

CL-Out bioremediation was used to remediate ground water at an active manufacturing plant in eastern Massachusetts after ISCO treatment of TCE in groundwater reached a limit.  CL-Out was selected because the aquifer was naturally aerobic.  CL-Out cometabolizes TCE and other chlorinated solvents under aerobic conditions by producing an oxygenase enzyme that breaks the carbon to carbon bond.  Under aerobic conditions daughter products such as DCE and vinyl chloride are not formed.  30 days after one application of CL-Out the TCE concentration was reduced by 97% and the site remediation goals were achieved. Click here to download the case study.

Pesticide Bioremediation – Landfarming Application for DDD, DDE and Toxaphene

Petrox® bioremediation was used to remediate pesticide-contaminated soil at an industrial location in California.

Soil Remediation

The soil contamination consisted of pesticides including 4,4-DDD, 4’4-DDE and toxaphene.  Soil samples were sent to CL Solutions for bench-scale treatability studies.   The following table shows the  maximum detected concentrations and the treatment results.

Untreated Concentrations (ug/Kg)
Post-treatment concentrations (ug/Kg)

After the bench-scale verification, full-scale bioremediation was implemented.  The contaminated soil was placed in two stockpiles and treated with Petrox. The following table shows the pre- and post-treatment results.

Contaminant Concentrations (ug/Kg)
Pile 1
Pile 2
nd ( <5)
nd  (<5)
nd (<5)


The Petrox treatment successfully reduced the concentrations of pesticide contaminants in the soil stockpiles.  For additional information or assessment of applicability to your site contact CL Solutions.

In Situ CL-Out Bioremediation of Industrial Solvents

Case Study :

Industrial Manufacturing Site, Illinois

Remediation Summary

Leaks from an aboveground solvent tank impacted soil and ground water quality at a manufacturing site in Illinois.  The impact was found under the adjoining building as well as the area near the tank.  The soil and ground water were treated in situ with CL-Out® bioremediation microbes.  Through cometabolism CL-Out® microbes reduced the contaminant concentrations to acceptable levels in less than one year.

Contaminants Soil Results (mg/Kg) Ground Water Results (mg/L)
Pre-Treatment Post- Treatment Pre-Treatment Post- Treatment
PCE 41.8 1.69 5.59 0.006
TCE 4,670 632 15.6 0.026
Cis 1,2-DCE 171 56.6 7.43 0.029
Vinyl Chloride BDL BDL 0.095 0.013

Implementation and Results

Soil Type:  Silty clay till

Treatment Area:  15,000 sq. ft.

Unsaturated soil thickness:  16 ft.

Saturated aquifer thickness:  5 ft.

Treatment: Two applications, initial treatment with 13 units of CL-Out® and follow up treatment with 5 units.

Product Cost: $30,000


CL-Out® bioremediation quickly and cost-effectively reduced the contaminant concentrations to acceptable levels.  Through cometabolism the parent and daughter products were removed simultaneously.  CL-Out® bioaugmentation accelerated the site remediation and reduced uncertainty by applying the right microbes where they were needed.

PAH Bioremediation

The results of a recent bench-scale test confirmed the effectiveness of a special blend of CL Solutions’ microbes formulated for PAH bioremediation.  The test results showed that after two weeks, the total concentration of 15 PAH compounds decreased by 85% from a total of 358 mg/kg to 50.9 mg/kg.  Benzo(A)pyrene is often a most difficult PAH to remove. The test showed that the custom blend reduced the benzo(A)pyrene concentration from 24.5 mg/kg to 3.68 mg/kg.  Tests will continue to determine whether even greater effectiveness can be achieved over 30 days.