Posts

Bioremediation of Phthalates

Fast and Economical Phthalate Contamination Removal

Bioremediation of phthalates can reduce risks to human health and the environment.  Phthalates are a  a family of common industrial chemicals used in plastics and other consume products.  Phthalates can damage the liver, kidneys, lungs and reproductive system.  Petrox microbes can remove these contaminants from water or soil to reduce potential exposure to these risks.

Petrox bioremediation of phthalates has been demonstrated in field and laboratory studies to remove phthalates from soil and ground water.  Field application of Petrox bioremediation reduced bis(2-ethylhexyl)phthalate (BEP) concentrations from 650 ppm to 397  ppm in soil and 300 to 39 ppb in ground water at a site in Rochester, New York.  At the same site di-n-octylphthalate (DOP) in soil was reduced from 7.5 to 1.9 ppm. Click here to view the case study.

Oil-Contaminated Water Treatment

Sustainable Bioremediation of Industrial Wastewater

CL Solutions provides a special consortium of microbes for oil-contaminated water treatment.   Under various conditions, the oil removal rate was as much as 1,300 mg/L/day.  In some situations the remediation goal is simply to remove the visible sheen or separate-phase oil.  With aeration, CL Solutions microbes were able to remove the visible oil layer and reduce the TPH concentration from 29% to less than 1% in 30 days at a waste oil lagoon. For more information and other case studies click here.

A special consortium of microbes removed the visible oil layer from this wastewater.

Oil-Water Separator Discharge Improvement

Similar to waste water treatment in lagoons, Petrox is used to improve the performance of industrial and commercial oil-water separators by degrading dissolved-phase oil.  The treatment goal is to reduce the TPH concentration to below discharge limits to avoid fines, surcharges and potential discontinuation of service.  The Petrox organisms may be introduced into the collection and treatment system at any point,  but are usually added to the collection or equalization sump for longer contact time.  In most cases, the dissolved phase total petroleum hydrocarbons  (TPH) is reduced by 50% to 90% in a manner of days.

For example, at a large city municipal Petrox reduced the TPH discharge from 25.9 to 7.40 mg/L in three days.  At smaller retail oil-change centers the reduction was from 278 mg/L TPH to 14.1 mg/L TPH  in 21 days.  The biological treatment is maintained by adding a gallon of Petrox to the sump weekly.

The cost for maintaining discharge compliance at these applications is as little as $250 per month.

Benzo(a)pyrene Bioremediation Using Custom Blend Microbes

Benzo(a)pyrene is a difficult remediation challenge. It is resistant to biological and chemical destruction and extraction from soil.  CL Solutions Custom Blend microbes, however, have successfully remediated benzo(a)pyrene and other PAHs in soil during ex situ land farming treatment.  By placing the contaminated  material in windrows, controlling the temperature and moisture, the addition of Custom Blend microbes has reduced the benzo(a)pyrene concentration by as much as 330 ug/kg/day.

The same approach works on high as well as low concentrations.  At a site in Oregon, the benzo(a)pyrene concentration was reduced from 140 ug/Kg to below detection limits in 7 days.  At a site in Ohio, the benzo(a)pyrene concentration was reduced from 28,000 ug/kg to 3.8 ug/Kg in 60 days.  At both sites, Custom Blend microbes effectively treated the full suite of PAHs along with the benzo(a)pyrene.

Soil Bioremediation at Dry Cleaners

Permanently remove vapor intrusion risk

Soil bioremediation is a more effective strategy for managing the vapor intrusion risk at dry cleaners where solvents have contaminated soil or shallow ground water.  Soil bioremediation quickly eliminates the problem, while long-term vapor mitigation ties up resources in on-going operation, maintenance and monitoring costs.  Soil bioremediation eliminates the source of  vapors entering the cleaners and adjoining properties.  The source removal restores the full property value without disrupting operations.

CL-Out microbes have been used at many sites in the US and Canada to remove PCE contamination from soil at dry cleaners and other industries where solvents are used. CL-Out is a consortium of microbes selected for their ability to cometabolize chlorinated solvents under aerobic conditions.  The microbes are pumped into the soil through small boreholes in the building or surrounding area.  Once in the soil, the microbes produce metabolic enzymes that convert the PCE into carbon dioxide and water without generating harmful by products.

The following case studies are examples of how quickly and cost effectively CL-Out bioremediation removes the soil contamination:

Chicago, Illinois

CL-Out bioremediation reduced concentrations of dry cleaning solvents in soil to allow for the redevelopment of a property into luxury condos.  After the old building was removed, the contractor mixed CL-Out microbes into the PCE-contaminated soil.  After 90 days the soil was tested to verify success.

The 90-day sampling showed that the remediation met the site cleanup standards.  PCE was reduced by more than 95% from a maximum of 3,100 mg/kg to less than 120 mg/kg.  A “No Further Action” letter was submitted to IEPA.  The CL-Out cost for the project was $13,000.

Orange County, California

At a site in southern California, the soil and ground water contamination was removed at at operating dry cleaners without interrupting the business operations.  CL-Out microbes were injected into the soil and ground water through small-diameter borings.  Inside the building, hand-dug borings less than 3-inches in diameter were used for the treat the soil. Two drums of CL-Out microbial solution were injected into 80 cubic yards of contaminated soil.

After 30 days soil sampling showed the PCE concentration was reduced by 85% from 775 ug/Kg to 115 ug/Kg.  No daughter product were generated during the bioremediation.

The ground water was treated simultaneously and the contaminant concentrations were reduced by more than 90%.

The cost for CL-Out to treat both soil and ground water was $9,500.

Click here to view the full case study.

Call CL Solutions to discuss removing the vapor intrusion risk at your property.

 

PAH Bioremediation

The results of a recent bench-scale test confirmed the effectiveness of a special blend of CL Solutions’ microbes formulated for PAH bioremediation.  The test results showed that after two weeks, the total concentration of 15 PAH compounds decreased by 85% from a total of 358 mg/kg to 50.9 mg/kg.  Benzo(A)pyrene is often a most difficult PAH to remove. The test showed that the custom blend reduced the benzo(A)pyrene concentration from 24.5 mg/kg to 3.68 mg/kg.  Tests will continue to determine whether even greater effectiveness can be achieved over 30 days.