Posts

How Sustainable Green Remediation Saves Time And Money

CL-Out Bioremediation Wins Green Remediation Recognition and Saves Time and Money

Sustainable, green remediation is recommended to reduce the environmental impact of the removal of existing soil or groundwater contamination.  It has the added benefit of reducing costs and accelerating remediation to save time.

Following the ASTM standards greener remediation best management practices, Irwin Engineering of Boston, Massachusetts saved time and money for their client in the removal of nitrate and perchlorate contamination using CL-Out bioremediation.  Most of the savings came from switching from ground water extraction and treatment using ion-exchange to in situ bioremediation.

Using best management practices saved the following amount of money:

  • Reused existing piping and structures – saved $10,000.
  • Switched from ground water extraction for thermal treatment to in situ bioremediation – saved $2-3 million.
  • Close delineation and remediation planning to reduce treatment volumes – saved $1-2 million.
  • On-site biological treatment of well development water – saved $15,000.
  • Used ion specific probes to optimize lab performance – saved $20,000.
  • Used vegetation testing to delineate plume in the wetland – saved $50,000.
  • Used horizontal wells for bioremediation injection where appropriate – saved $30,000.

Overall project savings $3 to $5 million.

Overall time savings 3 to 5 years.

The property was sold to a new owner and transferred without impairment.

 

Photographs of Field Applications of Bioaugmentation

These photographs show actual field applications of CL-Out and Petrox.

CL-Out and Petrox are typically packaged in drum liners for convenience.

The hydrated microbes are staged typically for 12 to 24 hours prior to application.

Hydrated microbes are transfered from the drum to the contaminated media for treatment.

CL-Out and Petrox are provided in bulk bags for hydration in tanks larger than 55 gallons.

Hydrated micorbes may be applied to the surface and blended into contaminated soil.

The hydrated microbes may be injected into soil or ground water for in situ treatment.

Blending in the micorbes can also increase available oxygen.

 

Bioremediation of Phthalates

Fast and Economical Phthalate Contamination Removal

Bioremediation of phthalates can reduce risks to human health and the environment.  Phthalates are a  a family of common industrial chemicals used in plastics and other consume products.  Phthalates can damage the liver, kidneys, lungs and reproductive system.  Petrox microbes can remove these contaminants from water or soil to reduce potential exposure to these risks.

Petrox bioremediation of phthalates has been demonstrated in field and laboratory studies to remove phthalates from soil and ground water.  Field application of Petrox bioremediation reduced bis(2-ethylhexyl)phthalate (BEP) concentrations from 650 ppm to 397  ppm in soil and 300 to 39 ppb in ground water at a site in Rochester, New York.  At the same site di-n-octylphthalate (DOP) in soil was reduced from 7.5 to 1.9 ppm. Click here to view the case study.

1,1,1-TCA Bioremediation at an Industrial Site in Dayton, Ohio

Fast, Economical Site Cleanup

CL-Out bioremediation reduced the concentration of 1,1,1-TCA in ground water at a steel manufacturing facility in Dayton, Ohio. Following implementation of ozone treatment and high vacuum extraction for more than 2 years, the contaminant concentrations remained high.  Bioaugmentation followed up on these treatments and reduced the 1,1,1-TCA concentration very quickly.  Within 30 days of bioaugmentation, the source area contaminant concentration decreased by 80%.  After a second application, the concentration decreased from the pre-treatment concentration of 1,100 ug/L to 1.4 ug/L.  The bioaugmentation effect was observed as far as 250 feet downgradient where the concentrations decreased by more than 50%.  Click here for the full case study.

 

 

Bioremediation of a Dry Cleaners

Cost-effective Bioremediation of a Dry Cleaners Quickly Removed Contamination

Historical operations at a Houston area dry cleaners resulted in a chlorinated solvent plume (perchloroethylene or PCE) in the shallow ground water. Permeable shallow soil at the site allowed rapid vertical migration at the source and lateral migration in the shallow ground water. This migration resulted in an off-site migration of the plume beneath an apartment complex causing concern for potential vapor intrusion hazards; as well as, a decrease in property value.

A ground-water extraction and treatment system was installed to address the
dissolved phase concentrations. The system reduced the total volatile organic compound
(VOC) concentration in the source area from 115,400 to 36,500 µg/l. However, over
time, operating maintenance and cost escalations were exceeding the on-going remedial
benefit. The system was shut down after nine years of operation.

A review of available remedial technologies that could be implemented within the physical constraints of the
site was conducted. In-situ enhanced aerobic bioremediation was selected to address the
remaining ground-water concentrations because of the permeability of the formation, the
relatively aerobic conditions, and the benefit of reducing the risk of VC accumulation.