Fast Bioremediation Eases Site Development in Boston

Underground storage tank (UST) leaks from a former gas station contaminated shallow ground water under a parking lot for a commercial building.  The UST contamination was found during trenching for utilities.  As the presence of contamination prevented further property development, fast remediation was important to the stakeholders.

The size of ground water plume that resulted from leaching soil contaminants was estimated to be 5,000 square feet.    The contamination was mainly diesel-range petroleum constituents, with the highest concentrations in the aliphatic range, but there were also scattered detections of xylene, toluene, and ethylbenzene.

Petrox bioremediation was implemented in the ground water.  Three units of Petrox (165 gallons) were injected into the contaminated ground water through vertical injection wells located up gradient of the monitoring wells.

After a single inoculation of Petrox, the contaminant concentrations were reduced across the property.  The following table shows the overall reduction in both the volatile and semi-volatile range hydrocarbons.

Presentation1

Fast, Easy Drainage Ditch Cleanup

Petrox bioremediation of surface spills and TPH accumulation in drainage ditches and maintenance areas is simple. Using a simple manual sprayer, the Petrox is applied to the soil surface. The Petrox microbes begin bioremediation immediately to enhance natural digestion of the petroleum, like probiotics for petroleum destruction.  Unlike detergents that wash the visible oil deeper in the soil, Petrox microbes destroy the all of the oil.

The following chart and table show the results of the application of Petrox to petroleum-contaminated soil in a drainage ditch. After about 60 days, the TPH concentration was reduced by 67% in one location and over 90% in three locations.  A second application to the 30 ft. north area reduced the concentration even more.

The problem was solved for a total Petrox cost of $600.

houston soil treatment chart houston soil treatment table

 

 

 

Bioaugmentation to Improve Oxygen Delivery Results

Many times oxygen is injected to improve natural attenuation of petroleum and other contaminants.  The results are often less than expected because the beneficial microbes that the oxygen addition is supposed to stimulate are absent or insufficient in numbers.  Bioaugmentation has been used to improve the results once the oxygen levels have increased but failed to improve the remediation rate.

The following table shows the results of Petrox bioaugmentation at a site in New Hampshire where the operation of an iSOC oxygen-delivery system failed to achieve stimulated bioremediation.  The table shows the improvement of the degradation rates and the achievement of reaching remediation goals.

Contaminant Pre-iSOC After iSOC Installation After Petrox Application
3/19/2002 1/9/2003 11/29/2004 2/9/2005 4/22/2005
Benzene 33 34 163 27 <2
Toluene 36 13 143 13 <2
Ethylbenzene 130 29 167 29 <2
Total Xylenes 500 141 336 109 <2
MTBE 60 24 61 35 1
Naphthalene 320 196 58 17 <2
1,2,4-Trimethylbenzene 110 40 238 110 <2
1,3,5-Trimethylbenzene 54 29 25 16 <2

Petrox Bioremediation of Oil-Field Waste

Petrox bioremediation of oil field wastes reduced concentrations in lagoon sludge fast.  Petrox is a specialty bioremediation product comprised of patented strains of live vegetative aerobic microorganisms providing fast, effective degradation of petroleum hydrocarbons.

The oil-field pit treatment demonstrates the effectiveness of Petrox to treat oil production wastes encountered during the closure of multiple lagoons in the Southeast. Regulations required oil and grease concentrations below 1% prior to closure. Petrox reduced the petroleum to compliance levels in less than 30 days.
OilFieldSouthE-bar

Pit #

Pit Size

Initial

Final

Treatment Days

1

45’x60’x5’

28.89%

 

0.97%

 

30

2

30’x30’x6’

 

9.48%

 

0.66%

 

20

3

30’x40’x4’

 

4.20%

 

0.71%

 

17

4

30’x30’x5’

 

3.10%

 

0.07%

 

30

5

90’100’x8’

 

1.38%

 

0.88%

 

25

In Situ Bioremediation of Petroleum LNAPL

Background

High concentrations of petroleum in the subsurface can accumulate in a separate liquid phase that floats on the water table, which is referred to as light non-aqueous phase liquid (LNAPL). Investigation and characterization of the extent of separate phase petroleum is challenging. In turn, successful remediation, which depends on accurate and complete site characterization, can be equally challenging. In this case study Petrox® bioaugmentation was used to remove LNAPL and dissolved-phase petroleum to achieve No Further Action status.

Geology and Hydrogeology

The site is located in the Georgia Piedmont where the geology is characteristically weathered granite and saprolite. The petroleum was found in layers of interbedded clay, silt and sand. The first water was encountered at approximately 28 feet below ground surface. The hydraulic conductivity based on slug tests of the impacted zone was 10-4 to 10-5 cm/sec.

The ground water aquifer was naturally aerobic. Dissolved oxygen measurements taken from monitoring wells in the source area ranged from 1.9 to 2.1 mg/L. The oxidation-reduction potential (ORP) measured in the same wells ranged from 241 to 283 mv. The aerobic conditions were not typical of petroleum releases, but favored in situ bioremediation.

During the implementation of bioremediation, the region experienced a drought. The water table dropped below the bottom of some of the monitoring well screens for part of the period. Sampling results may have been affected during the drought, but normal ground water conditions were restored and maintained for the final two years of monitoring.

Contamination

The leaking underground storage tank (UST) was removed and a temporary high-vacuum dual phase extraction system was operated for one day in April 2007. Approximately 50 gallons of petroleum was removed by the high vacuum system. After operation of the high vacuum system was discontinued, the source area total benzene, toluene, ethyl benzene and xylene concentrations was more than 143,000 µg/L and 22 inches of separate phase petroleum was found in a monitoring well outside of the former UST cavity.

The remediation goals were to remove the separate phase product and reduce the dissolved phase BTEX concentrations to below in-stream water standards.

Remediation Approach and Results

The remediation approach was combination of in situ Petrox® bioremediation and periodic liquid phase bailing. It was believed that the petroleum was present in a thin layer, but represented itself as a thicker layer in the monitoring well that intersected the layer. The separate phase was bailed out when it was encountered during monitoring events.

Petrox® bioremediation was used to degrade the petroleum in the ground between the former UST cavity and the impacted down gradient monitoring wells. Petrox® was introduced into the contaminated ground water in three applications by injection through nine temporary well points surrounding the former UST location.

The first injection was 275 gallons of microbial slurry in August 2007. The dissolved phase BTEX concentration decreased by more than 60%. The contaminant concentrations continued to decrease for a year following the first injection. The BTEX concentration was reduced by 90% in that first year. A second injection of 110 gallons of Petrox was completed in September 2008. After one month the BTEX concentrations decreased by 50%. The following table summarizes the treatment and contaminant removal results.

groundwatersampling

The analysis of ground water samples for Pseudomonas sp. by plate count analysis showed the microbial population increased over background levels. The Petrox population maintained an effective level for bioremediation for 6 months to a year following each application.

The separate phase was reportedly no longer present in 2011 and the site received a No Further Action Status designation.

Conclusions

This project demonstrates the benefits of bioaugmentation for high concentrations of petroleum in ground water. Bioaugmentation delivers very high population of effective petroleum-degrading organisms that can be sustained for a long time. The microbes are compatible with bailing out accumulated separate phase from monitoring wells to accelerate the site closure. The total cost for microbes used to close this site was $8,000.