Remove The Tea Bag Without Removing The Building

When a source of ground water contamination or contaminant vapors is present under a building, efforts to mitigate the spread of contamination may continue indefinitely with mounting costs.  Bioremediation may be used to remove the source of vapors or ground water contamination without damage to the building or interrupting operations.

There are many examples of this approach in the case studies on this site.  You can call us to find whether this approach is applicable to your site and the potential cost savings.

Bioremediation Using Petrox EC Under a Factory Floor

Bioremediation Using Petrox EC Under a Factory Floor

Fast, Easy Drainage Ditch Cleanup

Petrox bioremediation of surface spills and TPH accumulation in drainage ditches and maintenance areas is simple. Using a simple manual sprayer, the Petrox is applied to the soil surface. The Petrox microbes begin bioremediation immediately to enhance natural digestion of the petroleum, like probiotics for petroleum destruction.  Unlike detergents that wash the visible oil deeper in the soil, Petrox microbes destroy the all of the oil.

The following chart and table show the results of the application of Petrox to petroleum-contaminated soil in a drainage ditch. After about 60 days, the TPH concentration was reduced by 67% in one location and over 90% in three locations.  A second application to the 30 ft. north area reduced the concentration even more.

The problem was solved for a total Petrox cost of $600.

houston soil treatment chart houston soil treatment table




Bioremediation of Industrial Fill

Historical industrial sites often have deposits of fill material containing a wide range of organic contaminants.   Perched ground water  present in the base of the fill is usually impacted by the contaminants and may provide a mechanism for off-property migration of the contaminants.  The organic contaminants are wide spread throughout the fill without a well defined source area.  Cost-effective remediation is difficult with this combination of conditions.

Bioaugmentation with CL-Out or Petrox can remove the contaminants from the fill and perched water by destruction in place.  The organisms in CL-Out and Petrox can metabolize a wide-range of organic chemicals at concentrations from separate-phase layers to part per trillion levels.  Soil and ground water contaminants are addressed simultaneously though injection of the microbes without disturbing the  site operations.

The following table shows typical results from a single application of Petrox to contaminated soil and perched ground water on July 10, 2011.  The remediation progress was tracked by ground water monitoring because it was the easiest sampling method once wells were in place.Industrial Fill TreatmentThe results show that within 30 days the contaminant concentrations in perched water were reduced by 50%.  After 60 days there was slight rebound in come of the contaminants, showing that more soil treatment may be necessary if lower cleanup goals needed to be maintained.



Improve Soil Flushing and LNAPL Removal with Petrox EC

Petrox EC is a product that combines a surfactant with petroleum-degrading microbes to improve separate phase oil recovery and bioremediation of residual oil.  The combined approach improves the rate of oil removal from soil and other subsurface media and establishes a beneficial petroleum-degrading microbial population that will treat tightly bound or deeply penetrated oil.

Petrox EC has been used in combination with periodic LNAPL extraction by pumping or bailing.   In field applications the surfactant effect has increased the LNAPL recovery rate by more than 10 fold.

Petrox EC has also been used to improve the efficiency of air sparging by flushing oil from the sediment surface for sparging and vapor phase recovery.

California Site Closure with Petrox Bioremediation

Southern California Gasoline UST Release Site

After removal of USTs, piping and surrounding soils, ground water was treated with 110 gallons of Petrox® by direct injection in December 2009.  Post-treatment sampling shows that the bioaugmentation reduced the contaminant levels to below regulatory standards by the next semi-annual sampling round.

Sampling Date

TPHg Benzene Toluene Ethylbenzene

Total   Xylenes



1,200 320 7.2 700




<50 <0.5 <0.51 <1



All concentrations shown in µg/L.