Posts

Fast, Easy Drainage Ditch Cleanup

Petrox bioremediation of surface spills and TPH accumulation in drainage ditches and maintenance areas is simple. Using a simple manual sprayer, the Petrox is applied to the soil surface. The Petrox microbes begin bioremediation immediately to enhance natural digestion of the petroleum, like probiotics for petroleum destruction.  Unlike detergents that wash the visible oil deeper in the soil, Petrox microbes destroy the all of the oil.

The following chart and table show the results of the application of Petrox to petroleum-contaminated soil in a drainage ditch. After about 60 days, the TPH concentration was reduced by 67% in one location and over 90% in three locations.  A second application to the 30 ft. north area reduced the concentration even more.

The problem was solved for a total Petrox cost of $600.

houston soil treatment chart houston soil treatment table

 

 

 

Bioremediation of BTEX at an Industrial Site in Florida

Background

Petrox® bioaugmentation was used to remediate ground water contaminated by benzene, toluene, ethylbenzene and xylene (BTEX) at an industrial facility in central Florida (Facility ID No. 8521705). The bioremediation was implemented in perimeter wells around the source area where air sparging and vapor extraction was implemented. This combined approach provided cost-effective, full-site remediation by using complementary technologies.

Remediation Approach and Results

Petrox® was introduced into the contaminated ground water in the perimeter of the source area plume by injection through temporary well points. Two applications of Petrox® were completed. The initial application was in December 2007 and a subsequent application was completed in April 2008. During each application 550 gallons of Petrox® microbial slurry were injected into the ground water through 19 injection points. The treatment covered an area of approximately 7,000 square feet.

The ground water treatment results were monitored by laboratory analysis of ground water samples for the contaminants of concern. The quarterly monitoring results after the applications showed an immediate and continuous decrease in the BTEX concentrations. The following chart shows the total BTEX concentrations in three quarterly sampling events after the implementation of Petrox® bioaugmentation.

industrial-site6

Conclusions

This project demonstrates two of the benefits of aerobic bioaugmentation. Petrox® organisms were able to metabolize the BTEX compounds, which were initially at part per million levels, to below detection limits. Bioaugmentation provides active control of the site with hydrocarbon-degrading organisms compatible with air sparging and vapor extraction in the source area, where the contaminant concentrations persisted longer than in the bioaugmentation area.