Fast, Easy Drainage Ditch Cleanup

Petrox bioremediation of surface spills and TPH accumulation in drainage ditches and maintenance areas is simple. Using a simple manual sprayer, the Petrox is applied to the soil surface. The Petrox microbes begin bioremediation immediately to enhance natural digestion of the petroleum, like probiotics for petroleum destruction.  Unlike detergents that wash the visible oil deeper in the soil, Petrox microbes destroy the all of the oil.

The following chart and table show the results of the application of Petrox to petroleum-contaminated soil in a drainage ditch. After about 60 days, the TPH concentration was reduced by 67% in one location and over 90% in three locations.  A second application to the 30 ft. north area reduced the concentration even more.

The problem was solved for a total Petrox cost of $600.

houston soil treatment chart houston soil treatment table

 

 

 

Bioremediation of Industrial Fill

Historical industrial sites often have deposits of fill material containing a wide range of organic contaminants.   Perched ground water  present in the base of the fill is usually impacted by the contaminants and may provide a mechanism for off-property migration of the contaminants.  The organic contaminants are wide spread throughout the fill without a well defined source area.  Cost-effective remediation is difficult with this combination of conditions.

Bioaugmentation with CL-Out or Petrox can remove the contaminants from the fill and perched water by destruction in place.  The organisms in CL-Out and Petrox can metabolize a wide-range of organic chemicals at concentrations from separate-phase layers to part per trillion levels.  Soil and ground water contaminants are addressed simultaneously though injection of the microbes without disturbing the  site operations.

The following table shows typical results from a single application of Petrox to contaminated soil and perched ground water on July 10, 2011.  The remediation progress was tracked by ground water monitoring because it was the easiest sampling method once wells were in place.Industrial Fill TreatmentThe results show that within 30 days the contaminant concentrations in perched water were reduced by 50%.  After 60 days there was slight rebound in come of the contaminants, showing that more soil treatment may be necessary if lower cleanup goals needed to be maintained.

 

 

Vermont Dry Cleaner Remediation Using CL-Out

Cl-Out bioremediation was used to remove PCE from ground water at a dry cleaners in Vermont.  CL-Out micorbes were selected for bioremediation of the site because they are compatible with the natural aerobic aquifer conditions.  One application of CL-Out bioaugmentation reduced the PCE concentration by 90% in less than 6 months without increasing the vinyl chloride concentrations.

The following table summarizes the process of aerobic cometabolism of PCE.  The pre-bioaugmentation sampling showed aerobic conditions and a low population of Pseudomonas microbes.  After bioaugmentation the Pseudomonas population was higher.  As the microbes consumed the dextrose substrate and produced the oxygenase enzymes necessary for PCE destruction, the ORP and PCE concentrations decreased.  Six months after the bioaugmentation, the microbial population returned to the pre-bioaugmentation conditions.

Aerobic CL-Out Cometabolism Tracking

Field Bioremediation Rates For Petroleum and Solvents

The success of bioaugmentation depends on effective distribution of the beneficial microbes.  If the target population is achieved, the remediation rate ranges from 50% to over 99% removal.  The rate appears to be independent of the contaminant starting concentrations.  This indepedence is the advantage of bioaugmentation.  Through bioaugmentation the density of beneficial organisms is sufficient for frequent reactions with high or low contaminant levels.  The following chart shows the results of a single application of bioaugmentation at 11 sites in different states, with different contaminants.

remediation rates with bioaugmentation

 

The chart also suggests that the results are not time dependent.  The apparent time independence may be because the reactions are completed early and because these were grid applications with the monitoring locations within the bioaugmented area instead of downgradient where the results would depend on dispersion rates.

The USEPA tested the degradation rate of oil using Munox SR for NCP listing.  The degradation rate exceeded most comparable products with 95% removal of alkanes and 89% removal of aromatics in 28 days.  The NCP test results are available at https://19january2017snapshot.epa.gov/sites/production/files/2013-08/documents/notebook.pdf

 

Bioremediation of Dinitrotoluene

Dinitrotoluene (DNT) may occur in soil and ground water as the result of spills and historical use of the chemical as a solvent and industrial intermediary or as a residual of explosives at military facilities.  CL Solutions and SpecPro, Inc. conducted a treatability study to determine the effectiveness of CL-Out microbes in the removal of DNT from contaminated ground water at the Badger Army Ammunition Plant (BAAP) near Baraboo, Wisconsin.  The treatability study showed the removal of all six isomers of DNT, with a 53% to 91% removal in 21 days.  Intermediate by-products were detected only temporarily during the treatability study.  For more detailed information call CL Solutions.